2 resultados para LIVER-INJURY

em DRUM (Digital Repository at the University of Maryland)


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Obesity, currently an epidemic, is a difficult disease to combat because it is marked by both a change in body weight and an underlying dysregulation in metabolism, making consistent weight loss challenging. We sought to elucidate this metabolic dysregulation resulting from diet-induced obesity (DIO) that persists through subsequent weight loss. We hypothesized that weight gain imparts a change in “metabolic set point” persisting through subsequent weight loss and that this modification may involve a persistent change in hepatic AMP-activated protein kinase (AMPK), a key energy-sensing enzyme in the body. To test these hypotheses, we tracked metabolic perturbations through this period, measuring changes in hepatic AMPK. To further understand the role of AMPK we used AICAR, an AMPK activator, following DIO. Our findings established a more dynamic metabolic model of DIO and subsequent weight loss. We observed hepatic AMPK elevation following weight loss, but AICAR administration without similar dieting was unsuccessful in improving metabolic dysregulation. Our findings provide an approach to modeling DIO and subsequent dieting that can be built upon in future studies and hopefully contribute to more effective long-term treatments of obesity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Blast-induced Traumatic Brain Injury (bTBI) is the signature injury of the Iraq and Afghanistan wars; however, current understanding of bTBI is insufficient. In this study, novel analysis methods were developed to investigate correlations between external pressures and brain injury predictors. Experiments and simulations were performed to analyze placement of helmet-mounted pressure sensors. A 2D Finite Element model of a helmeted head cross-section was loaded with a blast wave. Pressure time-histories for nodes on the inner and outer surfaces of the helmet were cross-correlated to those inside the brain. Parallel physical experiments were carried out with a helmeted headform, pressure sensors, and pressure chamber. These analysis methods can potentially lead to better helmet designs and earlier detection and treatment of bTBI.